Some Identities on the Generalized q-Bernoulli Numbers and Polynomials Associated with q-Volkenborn Integrals

نویسندگان

  • T. Kim
  • J. Choi
  • B. Lee
  • C. S. Ryoo
  • Alberto Cabada
چکیده

Let p be a fixed prime number. Throughout this paper, Zp, Qp, C, and Cp will, respectively, denote the ring of p-adic rational integer, the field of p-adic rational numbers, the complex number field, and the completion of algebraic closure of Qp. Let N be the set of natural numbers and Z {0} ∪ N. Let νp be the normalized exponential valuation of Cp with |p|p p−νp p p−1. When one talks of q-extension, q is considered as an indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, we normally assume that |q| < 1, and if q ∈ Cp, we normally assume that |1 − q|p < 1. We use the notation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

Some Identities of Symmetry for the Generalized Higher-order (h, q)-Bernoulli Polynomials of the Second Kind

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give a new symmetry identities for the generalized higher-order (h, q)-Bernoulli polynomials which are derive from the properties of symmetry of Volkenborn...

متن کامل

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

Abstract. The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss’s multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iter...

متن کامل

q-Beta Polynomials and their Applications

The aim of this paper is to construct generating functions for q-beta polynomials. By using these generating functions, we define the q -beta polynomials and also derive some fundamental properties of these polynomials. We give some functional equations and partial differential equations (PDEs) related to these generating functions. By using these equations, we find some identities related to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010